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0.1. Formulation.

Conjecture 1 (Masser-Oesterlé 1985). Let ε > 0. Then for all but finitely many
triples of coprime integers a, b, c with a+ b = c, we have

max(|a|, |b|, |c|) < rad(abc)1+ε.

Any polynomial bound � rad(a, b, c)N would have far reaching consequences.
The known result, due to C.L. Stewart, R. Tijdeman and Yu Kunrui (1991), falls
far short of that

max(|a|, |b|, |c|)� exp(rad(abc)1/3+o(1))

0.2. Asymptotic Fermat. We can use the abc conjecture to deduce that for N �
1, there are no nontrivial solutions of xN + yN = zN in coprime integers, that is
with all variables nonzero.

Assume that xN + yN = zN , with x, y, z > 0 (so z ≥ 2) and coprime. Apply the
abc conjecture to obtain

zN = max(xN , yN , zN ) ≤ C(ε) rad(xNyNzN )1+ε = C(ε) rad(xyz)1+ε ≤ C(ε)z3(1+ε)

and so

2 ≤ z ≤ C(ε)1/(N−3(1+ε)).

But for N ≥ N(ε), we have C(ε)1/(N−3(1+ε)) < 2 which gives a contradiction.
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0.3. Why the exponent 1 + ε? Here is a quick example showing why one needs
the exponent to be bigger than 1 in the conjecture: For any constant M > 0, there
are infinitely many coprime triples a, b, c with a+ b = c such that

max(|a|, |b|, |c|) ≥M rad(abc).

Exercise 1. Let Ak = 32k − 1, Bk = 1, Ck = 32k

. Show that for all k ≥ 2,

Ck ≥
2k+1

3
rad(AkBkCk)

and hence that

Ck � Rk logRk,

where Rk := rad(AkBkCk).

Hint: Show that 2k+2 divides 32k − 1.

0.4. The conjectures of Catalan and Pillai. Catalan (1844) conjectured that
there are no consecutive perfect powers, other than the pair (8, 9) = (23, 32). That
is there are no solutions of xm − yn = 1 with x, y > 1, m,n ≥ 2 except for (8, 9).

This conjecture attracted a huge amount of attention over the years. We can
clearly suppose both m = p and n = q are prime. The case (p, q) = (2, 3) or (3, 2)
was already solved by Euler about a 100 years prior to Catalan. The case q = 2,
i.e. the equation xp−y2 = 1, was solved in 1850 by Victor-Amédée Lebesgue1. The
case x2 − yq = 1 (q > 2 prime) remained open until the 1960’s (published 1964),
when it was solved by Chao Ko (Ke Zhao).2 Already in 1921, Nagell showed that
min(p, q) 6= 3.

Tijdeman (1976) uses Baker’s method to show finiteness of the set of solutions,
which in principle (but not in practice) settles the case. His bound was effective,
but all subsequent refinements gave bounds which were far too large, (e.g. xm <
exp exp exp exp 730).

Catalan’s conjecture was finally proven by Preda Mihailescu in 2002.
More generally, S. S. Pillai (1931) conjectured that the gaps in the sequence

of perfect powers tend to infinity. This is equivalent to saying that each positive
integer occurs only finitely many times as a difference of perfect powers. This
conjecture follows from abc.

Exercise 2. Show that the abc conjecture implies Pillai’s conjecture: each positive
integer occurs at most finitely many times as a difference of perfect powers. For each
k ≥ 1, there are at most finitely many solutions of xm− yn = 1 with x, y,m, n ≥ 2.

0.5. The polynomial abc theorem. For a polynomial P (x) ∈ C[x], if we factor
P (x) = c

∏
(x− aj)nj with aj ∈ C the distinct roots, the radical is

rad(P ) :=
∏

(x− aj).

We note some immediate consequence of the definition of radP :
Multiplicativity: If P , Q, are pairwise coprime then

rad(PQ) = rad(P ) rad(Q).

1Not to be confused by the more famous Henri Lebesgue, 1875-1941.
2Ke Zhao 1910-2002 was a student of Mordell in Manchester, obtaining his Ph.D. in 1937.
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What is new for C[x] relative to Z is that we have a relation with the derivative:

radP =
P

gcd(P, P ′)

because the multiple roots of P are also roots of P ′ with multiplicity exactly one
less.

Remarkably, the analogue of the abc conjecture is an easy result (in sharper
form) in this context, as was found independently by R. Mason (1983) and by W.
Stothers (1981).

Theorem 0.1. Let A,B,C ∈ C[x] be pairwise coprime, with A+B = C. Then

max(degA,degB, degC) < deg rad(ABC).

Proof. Note that on differentiation

A+B = C −→ A′ +B′ = C ′.

Hence
AB′ −A′B = AC ′ −A′C.

Since gcd(C,C ′) divides AC ′ − A′C, it also divides AB′ − A′B, which is divisible
by the product of the coprime polynomials gcd(A,A′) and gcd(B,B′), which are
both coprime to gcd(C,C ′) since A, B, C are mutually coprime. Hence

gcd(C,C ′) | AB′ −A′B
gcd(A,A′) · gcd(B,B′)

= rad(A)
B′

gcd(B,B′)
− rad(B)

A′

gcd(A,A′)

The RHS visibly has degree at most

deg rad(A)+(deg radB′−deg gcd(B,B′)) < deg radA+(deg radB−deg gcd(B,B′))

= deg radA+ deg radB = deg rad(AB)

(same computation for the second factor), and so

deg gcd(C,C ′) < deg rad(AB).

Since radC = C/ gcd(C,C ′), we obtain

degC = deg gcd(C,C ′) + deg radC < deg rad(AB) + deg radC = deg rad(ABC)

as claimed. �

An immediate corollary is Fermat’s theorem for C[x] (due originally to Liouville,
1851):

Corollary 0.2. If f, g, h ∈ C[x] are coprime, at least one of which has positive
degree, with fn + gn = hn, then n ≤ 2.

Proof. Take A = fn, B = gn, C = hn. Then since they are all coprime, we have

rad(ABC) = rad(fngnhn) = rad(fgh).

Hence if deg f = max(deg f, deg g,deg h) > 0, we find from the Mason-Stothers
theorem that

ndeg f = deg(fn) < deg rad(fgh) ≤ deg fgh ≤ 3 deg f

which gives n < 3 as claimed. �

Exercise 3. Prove the polynomial Catalan conjecture: There are no consecutive
perfect powers of positive degree in C[x], i.e. no solutions of f(x)m − g(x)n = 1
with f, g ∈ C[x], m,n ≥ 2 and deg f > 0.
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0.6. Wieferich primes. A Wieferich prime is p such that 2p−1 = 1 mod p2. These
primes are named after Arthur Wieferich who in 1909 proved that if the first case
of Fermat’s last theorem3 is false for the exponent p, then p satisfies the criteria
2p−1 = 1 mod p2.

The only known Wieferich primes are 1093 and 3511. Non other exist up to 1017

(as of 2015). It is conjectured that there are infinitely many Wieferich primes AND
infinitely many non-Wieferich primes, but neither is known. A heuristic suggests
that the number of Wieferich primes up to x is about log log x.

J. H. Silverman (1988) showed that if the abc conjecture holds, then there exist
infinitely many non-Wieferich primes, moreover that the number of non-Wieferich
primes (to base 2) with p ≤ x is � log x as x→∞.

Theorem 0.3 (Silverman 1988). Assuming the abc conjecture, there are infinitely
many non-Wieferich primes.

Proof. Let S be the set of non-Wieferich primes, which we will assume to be finite.

Note that if n ≥ 1 and p is a prime, with p - n such that 2n = 1 mod p then

(1) 2n 6= 1 mod p2 if and only if p ∈ S.

Indeed, let d = ord(2, p), which divides p − 1 and also divides n since 2n =
1 mod p. Moreover, since 2n 6= 1 mod p2 and d | n and so 2d 6= 1 mod p2. Since
d | p− 1, write p− 1 = dm, and

2p−1 = 1 + pk, p - k

Then

2p−1 = (2d)m = (1 + pk)m = 1 + pkm mod p2

which is not 1 mod p2 because p - k, and certainly p - m since m | p − 1. Thus
2p−1 6= 1 mod p2, so that p ∈ S. (HERE we didn’t use p - n).

Conversely, if p ∈ S, so that 2p−1 6= 1 mod p2, then also 2d 6= 1 mod p2 and so
as before 2d = 1 + pk with p - k. Write n = Md,

2n = (2d)M = (1 + pk)M = 1 + pkM mod p2

and recall that p - n so that p -M , hence 2n 6= 1 mod p2.
Assume that S is finite. Write for n coprime to S

2n − 1 = snvn

where sn is made up of powers of primes in S, and vn is not divisible by any prime
in S.

We claim that sn is bounded. In fact we claim that sn is squarefree, hence is a
divisor of

∏
p∈S p. To see this, first note that for any p | sn, we have 2n = 1 mod p

and since p ∈ S we have 2p−1 6= 1 mod p2. Since we assume that n is coprime to
S, that forces 2n 6= 1 mod p2 by (1), that is p2 - 2n − 1 so that p2 - sn.

Now if p | vn, so that p /∈ S, since p | 2n − 1 this implies that p2 | 2n − 1 by (1).

Hence rad(vn) ≤ v1/2
n .

Now consider the equation

(2n − 1) + 1 = 2n

3he first case of Fermat’s last theorem says that for three integers x, y and z and a prime
number p, where p - xyz, there are no solutions to the equation xp + yp + zp = 0.
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According to the abc conjecture, given ε > 0, we have for n�ε 1

(2n)1−ε < rad ((2n − 1)2 · 2n) = 2 rad(snvn) ≤ 2(
∏
p∈S

p) rad(vn)� v1/2
n

But also 2n > snvn ≥ vn so that we find

vn � v1/2
n

Thus there are only finitely many possibilities for vn, and also for sn, so that n
has to be bounded. Thus there are only finitely many possibilities for n, which is a
contradiction since we only assumed that n is coprime to the finitely many primes
in S. �

0.7. Langevin Elkies. There is a seemingly stronger statement which turns out
to be a consequence of the abc conjecture, and which is very useful in applications:
Let

F (x, y) =
∑
i+j=d

ai,jx
iyj ∈ Z[x, y]

be a binary homogeneous polynomial of total degree d. We assume that F (x, y)
has distinct factors over C, that is

F (x, y) = c

d∏
j=1

(x− αjy) or F (x, y) = cy

d−1∏
j=1

(x− αjy),

with αj ∈ C distinct, c ∈ C∗. For instance we can take F (x, y) = xy(x+ y).

Theorem 0.4 (Langevin 1994, Elkies). Assume the abc conjecture. Let F (x, y) ∈
Z[x, y] be a homogeneous binary form, without repeated factors. Then for all ε > 0,
∃C(F, ε) > 0 so that for all pairs (m,n) ∈ Z2 with gcd(m,n) = 1 and F (m,n) 6= 0,

(2) rad(F (m,n)) ≥ C(F, ε) max(|m|, |n|)degF−2−ε.

For instance, taking F (x, y) = xy(x+ y) we substitute a = x, b = y, c = a+ b =
x+ y to obtain F (a, b) = abc and so

rad(abc)�ε max(a, b)1−ε

and since c ≤ 2 max(a, b) we can derive

max(a, b, c)�ε rad(abc)1+ε

which is the original abc conjecture. So certainly (2) includes the abc conjecture.
The remarkable thing is that Theorem 0.4 is actually implied by the abc conjecture.
The proof uses some fairly simple Riemann surface theory (Belyi maps), but will
not be presented here.

0.8. Roth’s theorem. The main result in Diophantine approximation theory is
Roth’s theorem (1950):

Theorem 0.5. Let α be a real algebraic number. Then for all ε > 0 there is some
C(α, ε) > 0 so that for any rational p/q 6= α, with p, q (coprime) integers,

|α− p

q
| ≥ C(α, ε)

1

q2+ε

It is worth recalling the basic result that set off much of the work in Diophantine
approximation theory:



6 ZEÉV RUDNICK

Theorem 0.6 (Liouville, 1844). Let α be a real algebraic number of degree d. Then
there is an explicit c(α) > 0 so that for any coprime p, q with α 6= p/q

|α− p

q
| ≥ c(α)

1

qd

To prove both results, we start with a computation: Let f(x) ∈ Z[x] be “the”
minimal polynomial for α, which is an irreducible polynomial (hence with distinct
roots) whose degree is degα, and set

F (x, y) = ydegαf(x/y) ∈ Z[x, y],

which is a binary form of degree d = degα. For instance, of α = 3
√

2 then we can
take F (x, y) = x3 − 2y3.

We claim

Lemma 0.7. (the implied constant is effective):

(3) |F (m,n)| � |N |d|m
n
− α|

Proof. Let α1 = α, α2, . . . , αd be the roots of f (all distinct). We may suppose
that m/n is closer to α then to any of the other roots, otherwise

|α−m/n| ≥ 1

2
c0(f) :=

1

2
min |αi − αj |

and there is nothing to prove. Hence

|m
n
− αj | ≤ |

m

n
− α|+ |α− αj | ≤ 2c0(f).

We have F (x, y) = c
∏d
j=1(x− αjy) and so

|F (m,n)| = |n|d|c||m
n
− α|

d∏
j=2

|m
n
− αj |

≤ |n|d|m
n
− α||c|c0(f)d−1 �α |n|d|

m

n
− α|.

which proves (3) . �

We can now quickly prove Liouville’s theorem:

Proof. We use the minimal polynomial and associated binary form F (x, y) as before,
and the inequality (3)

|F (m,n)| �α |n|d|
m

n
− α|

which is completely effective. Then we note that F (m,n) 6= 0 since F (x, y) is
irreducible over Q and in the case of d = 1 (so α ∈ Q) we assume that α 6= m/n.
Since F (m,n) ∈ Z, this forces |F (m,n)| ≥ 1 and so

1�α |n|d|
m

n
− α|

which is the statement of Liouville’s theorem. �

Let’s see how Roth’s theorem follows from the version of abc given by Theo-
rem 0.4.
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Proof. Again use (3), and note that |F (m,n)| ≥ rad(F (m,n)), and inserting The-
orem 0.4 gives

|n|d|m
n
− α| �α |F (m,n)| ≥ radF (m,n)�F,ε |n|d−2−ε

(here |m|, |n| have the same size since m/n is close to the fixed number α). Hence
we obtain

|m
n
− α| �α,ε |n|−2−ε

which is Roth’s theorem. �

0.9. Squarefree values of polynomials. A further application of the abc con-
jecture is to completely settle the problem of representing square-free integers by
integer polynomials.

It is conjectured that a separable polynomial (that is, without repeated roots)
f ∈ Z[x] takes infinitely many square-free values, barring some simple exceptional
cases, in fact that the integers a for which f(a) is square-free have a positive density.
A clear necessary condition is that the sequence f(n) has no fixed square divisor;
the conjecture is that this is the only obstruction:

Conjecture 2. Let f(x) ∈ Z[x] be a separable polynomial (i.e. with no repeated
roots) of positive degree. Assume that gcd{f(n) : n ∈ Z} is squarefree4 . Then
there are infinitely many square-free values taken by f(n), in fact that a positive
proportion of the values are square-free:

#{1 ≤ n ≤ X : f(n) is square-free } ∼ cfX, as X →∞ ,

with

(4) cf =
∏
p

(1− ρf (p2)

p2
) ,

where

(5) ρf (D) = #{c mod D : f(C) = 0 mod D} .

The problem is most difficult when f is irreducible. Nagell (1922) showed the
infinitude of squarefree values in the quadratic case. Estermann (1931) gave positive
density for the case f(x) = x2 + k. The general quadratic case was solved by Ricci
in 1933. For cubics, Erdös (1953) showed that there are infinitely many square-
free values, and Hooley (1967) gave the result about positive density. Beyond that
nothing seems known unconditionally for irreducible f , for instance it is still not
known that a4 + 2 is infinitely often square-free.

Granville (1998) showed that the ABC conjecture completely solves the conjec-
ture 2.

4In fact one can even allow fixed, square divisors of f(n), provided we divide them out in
advance, by replacing f(n) by f(n)/B′, where B′ is the smallest divisor of B := gcd{f(n) : n ∈ Z}
so that B/B′ is square-free, and if we replace cf by

∏
p(1 − ωf (p)

p2+qp
), where for each prime p, we

denote by pqp the largest power of p dividing B′, and by ωf (p) the number of a mod p2+qp for

which f(a)/B′ = 0 mod p2.


